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Abstract—A new approach to the model of natural convection from an isothermal inclined plate and a

simplified analytical solution of this model are presented. In this model two separate regions with different

fluid motions are distinguished. In the first region, the direction of fluid flow inside the boundary layer and

parallel to the plate buoyancy force component converge, while in the second one these directions are
opposite. The theory presented is verified experimentally.

1. INTRODUCTION

A CONSIDERABLE discrepancy between the results of
theoretical considerations and experimental inves-
tigations occurs in the convection heat transfer from
flat isothermal surfaces. This discrepancy is not con-
stant, but it alters with the plate inclination angle.
Differences between particular criteria relations,
describing the vertical case, obtained by 25 authors,
differ by +20% [1,2]. For inclined plates, the dis-
crepancies are much greater and amount to +45%
within the laminar range and to about 4- 100 % within
the turbulent range [3]. The interval containing the
results obtained for the horizontal case by 19 inves-
tigators amounts to ¢. +50% [1-3].

In the hitherto investigations [4] it has been proved
that the methods of measurement and the equipment
employed may cause errors yet their magnitude is
constant and independent of the plate inclination
angle. The only exception is the gradient method, in
which the accuracy may be influenced by the surface
inclination angle, especially in the case of incompetent
or accidental location of the experimental points
(thermocouples) on the measurement surface [S]. This
method, however, is most frequently used as a quali-
tative method together with a quantitative (balance)
method, so it cannot be the main reason for the dis-
crepancy of the above-mentioned criteria relations.
Therefore, it has been decided to search for the
reasons of such a behaviour by verifying the cor-
rectness of a physical model of the phenomenon. In
the author’s opinion even the most accurate cal-
culations based on an inaccurate model are not so
valuable as approximate calculations based on the
contrary on a more accurate model.

2. AIM OF WORK

The presented research attempts to apply a model
of the convective heat transfer, which would be
universal for all angles of plate inclinations

(0 < ¢ < w/2). The proposed model is a consequence
of visualization of the convective heat transfer from
real inclined plates. The aim was to describe the
phenomena taking place in the presented model by
reduced differential equations and also to solve them
in a simplified way. Approximate calculation methods
used in the works of an experimental type are
adequate due to the comparable order of accuracy of
the obtained results. Moreover, the advantage of these
methods is the possibility of direct interpretation of
the obtained results and a quick modification of exper-
imental investigations.

3. THEORETICAL MODELS OF THE
CONVECTION HEAT TRANSFER

The model proposed by Schmidt and Beckmann [6]
belongs to the already classical models of convective
heat transfer. This model was obtained on a basis of
experimental results of visualization of the boundary
thermal layer on a vertical isothermal plate [7]. Figure
1(a) presents a graphical interpretation of this model.
Subsequent investigations on vertical plates were
carried out by Lorenz (1934), Saunders (1939), Schuh
(1948), Ostrach (1953), Sparrow (1959), Gebhart
(1962, 1966) and also by Fujii (1972) [9], Takeuchi
(1974) [10], Ling (1982) [11], Churchill (1983) [12]
and others [8]. They are characterized by increasing
accuracy of calculations due to elimination of con-
secutive simplifying assumptions or to defining them
more accurately due to addition of other limiting con-
ditions. These considerations, however, irrespective
of the fact whether they have been conducted ana-
lytically or numerically, are always based on the same
physical model of this phenomenon (Fig. 1(a)).

The same model (Fig. 1(b)) has also been adopted
for a description of the results obtained with inclined
plates. The boundary layer thickness increases along
the plate length, but the buoyancy force, present in
the Navier—Stokes equations, is replaced by the force
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NOMENCLATURE
a thermal diffusivity, i/c,p Greek symbols
<, specific heat at constant pressure of fluid * heat transfer coefficient
d length or diameter of the plate B coefficient of volumetric expansion
F coefficient of boundary layer shape, é thickness of boundary layer
equation (12) A difference
g gravitational acceleration a dimensionless temperature
H height of a column of fluid (see Fig. 5) A thermal conductivity
i specific enthalpy v kinematic viscosity
m mass flux P fluid density
Nuy,, Nu,, Nusselt numbers, ad)/4, ox/A, ¢ angle of plate inclination
respectively i) coefficient related to ¢ and F, equation
P pressure (29).
q heat flux density
¢ heat flux Subscripts
Ray, Ra,,, Rag, Rayleigh numbers, ch characteristic
gPATd [va, g BAT X |va, g BATS  /va, cr point of separation of boundary layers
respectively I, 11 region I or region 11
T temperature tot  total
W velocity w wall
X length of boundary layer X x-direction or to fluid properties inside
X coordinate horizontal to the surface boundary layer
y coordinate vertical to the surface. oe] fluid ambient condition.

components x and y. This case has been investigated
by Rich (1953), Sugawa (1955), Vilet (1969) [8],
Kierkus (1968) [13] and also by Hassan (1970) [14],
Fujii (1972) [9], Miller (1978) [15], Rasmus (1979)[16],
Raithby (1983) [12], Lewandowski (1986, 1987) [3]
and others.

Convective heat transfer from a horizontal plate
has also been explained by a similar model (Fig. 1(c)}
based on a homogeneous boundary layer increasing
on a semi-infinite flat surface. The work of Rotem
and Claassen (1969) [17] is a standard example of
utilization of this model for a horizontal plate. These
scientists have also published the results of visu-
alization investigations. Their photographs not only

show the initial edge of the horizontal plate, they also
show the place where the boundary layer transforms
into a plume. At this point, the physical model of
this phenomenon accepted by them starts to be
inadequate. Hence, according to the analysis of their
results of visualization and also of Schimidt’s earlier
photographs (1934) [I18] the analogy between the
growth of a boundary thermal layer on a vertical and
a horizontal plate does not concern the whole surface,
Other investigators of this case, based on a semi-
infinite plate, are for example: Pera (1973), Blanc
(1974) [8], Goldstein (1983) [19] and others.

The results of visualization experiments, carried out
on real plates by Al-Arabi (1976) [20]. Sparrow (1969).

FiG. 1. Theoretic models of natural convection for a flat surface.
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Keun-Shik (1988) [21] and others [3] suggest that
it is necessary to employ another model of the
phenomenon.

However, to our knowledge, no works devoted to
horizontal surfaces, based on any other model than
that of the semi-infinite plate, have been published.
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4. RESULTS OF VISUALIZATION OF NATURAL
ED

ONVECTION FRON INCLIN
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The results of visual research on round plates pre-
sented in this chapter do not refer to the entire range
of plate inclination angles, but they are confined to

small values of these angles, satisfying the condition
of axial symmetry. At greater angles (¢ > 12 deg)
the experiments have been carried out on rectangular
plates, which for this range approached more closely
the two-dimensional model of the phenomenon [5].
Photographs presented in Fig. 2 concern the con-
vective heat transfer from an isothermal flat round
plate of diameter ¢ = 0.07 m. From among the photo-
graphs of plate inclination angle ranging from ¢ = 0
to 12 deg the case of plate inclination angle ¢ = 4 deg
has been chosen as an example for presentation. The
tested fluid was glycerine and heating fluxes were
¢ = 2.514 (Fig. 2(a)) and 7.288 kW m * (Fig. 2(b)).

F1G. 2. Visual photographs of natural convection heat transfer from an isothermal, round (d = 0.07 m)
plate to glycerine. Exposure time t = 5s: (a) ¢ = 2.514 kW m *; (b) g = 7.288 kW m~ 2.
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Table [. Results of experimental study of natural convection heat transfer from an
isothermal, round and inclined plate to glycerine

¢ T T, o Nu,, Ra,
[deg] q [C] [Wm~?deg ] (—I] 1
qg=2514kWm~?
0 32.57 15.67 89.993 22.072 6.206E+6
1 32.57 1591 91.264 22.383 6.206E + 6
2 32.59 16.09 92.176 22.605 6.224E+6
3 3247 16.28 93.917 23.032 6.134E+6
4 32.57 16.49 94.605 23.199 6.202E+6
5 32.80 16.75 94.744 23.231 6.379E+6
6 32.94 16.97 95.162 23.333 6.486E+6
8 33.11 17.25 95.868 23.504 6.612E+6
10 33.60 17.46 94.191 23.090 7017E+6
12 33.81 17.60 93.781 22,988 7.199E+6
g=7288kWm?’
0 54.28 20.45 130.246 31.797 S478E+7
1 54.17 20.35 130.337 31.820 S418E+7
2 54.07 20.17 129.975 31.733 5.359E+7
3 54.07 19.98 129.257 31.559 S5.339E+7
4 54.21 19.79 128.021 31.257 S378E+7
5 54.07 19.51 127.498 31.132 5.289E+7
6 54,07 19.25 126.550 30.902 5.260E+7
8 53.86 18.85 125.870 30.739 S5.129E+7
10 53.30 18.57 126.893 30.993 4.874E+7
12 53.20 18.21 125.954 30.767 4.799E+7

The quantitative aspect of the obtained exper-
imental results has been presented in Table 1.

The above photographs and the experimental pro-
cedure of investigation on natural convection heat
transfer from a round, inclined plate, as well as the
equipment used in the research, have been more exten-
sively described in refs. [3-5].

Analysis of the photographs of all the cases of plate
inclination angle gives evidence that for a horizontal
plate the boundary layers grow identically from oppo-
site leading edges and then transform above the plate
into a plume. The centreline of this axially symmetric
free heat flux is vertical to the surface and passes
through the plate symmetry axis. At increased incli-
nation angle the separation point of the boundary
layers, through which passes the centreline, moves to
one (trailing) edge and the opposite boundary layers
(identical for the horizontal case) begin to differ
increasingly from each other.

5. PROPOSED MODELS OF NATURAL
CONVECTION FROM FLAT FINITE PLATES

In the suggested models (Fig. 3) of convective heat
transfer from flat isothermal surfaces of finite dimen-
sions, transition from one case to the other proceeds
together with a displacement of the separation point.
Thus, the case of an inclined plate is virtually a general
model concerning plates arbitrarily oriented in an
unlimited space (Fig. 3(b)) in which vertical (Fig. 3(a))
and horizontal (Fig. 3(c)) positions of plates con-
stitute only specific cases. Versatility of the suggested
model consists of the fact that a change in surface
inclination angle results in fluent changes of the par-

ticipation of regions I and II in the heat exchange,
whereas participation of region III remains constant.
For the two characteristic cases—horizontal and ver-
tical—the differences between regions I and II gradu-
ally disappear in the first case, whereas in the second
case it is region II that gradually disappears. In the
final effect for horizontal plates two symmetrical
boundary layers exist, growing from each edge (region
I =region II) and transforming at the separation
point into free stream heat convection (plume). On
the other hand, in the case of vertical plates the model
is identical to the hitherto applied one, because then
only one boundary layer appears (region II = 0) sub-
sequently converting into a wake and next into a
plume (region III) [22].

6. PHYSICAL MODEL OF THE PHENOMENON

Limiting the considerations only to the boundary
layer region and to the two-dimensional case a physi-
cal model of the phenomenon may be expressed as
follows (Fig. 4). In this model three regions of the
convective heat transfer are specified.

(1) Region I, in which the buoyancy force is parallel
to g, and its sense conforms to fluid velocity W,. It is
a region of decisive importance with regard to heat
transfer, because the thickness of a boundary layer
(9,) is smaller, whereas its length (x) is greater than
in region II.

(2) Region II differs from region I in the sense of
fluid velocity in the boundary layer and in conse-
quences resulting from this fact as, for instance,
different shapes of the boundary layer d6/éx and x.
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F1G. 3. Real models of the convection heat transfer from: (a) vertical ; (b) inclined ; (c) horizontal plates.

(3) Region III, or the free heat convective flux,
which according to the evidence reported in refs.
[5,22], as it departs from the plate becomes the same
for all cases and therefore this region was omitted in
the calculations presented below.

7. SIMPLIFIED QUASI-ANALYTICAL SOLUTION

Introducing the simplifying assumptions typical for
the natural convection such as:

(a) fluid is incompressible and its flow is laminar,

(b) inertia forces in comparison with the viscosity
forces may be ignored,

o) W.>» W,

(d) physical properties of fluid in boundary layers
(index x) and in the undisturbed region (o0) are con-
stant,

(e) the temperature of the plate (7,,) is constant,

(f) thicknesses of thermal and hydraulic boundary

g sin ¢

T 1Pt Yoo Yo g

B

. /Tw

layers are the same, the Navier-Stokes equations may
be written as

W, . 1dp
v 37 +9p(T.—T,)sin pax—o 4]
1 dp
T.— T, )gcosp———=0 2
BT ~T.)geos p— o @

where the + and — signs refer to region I and region
I, respectively.

Instead of the direct form of the Fourier-Kirchhoff
equation it was decided, according to Squir and
Eckert, to make the assumption that the temperature
profile in the boundary layer is described by

In this quasi-analytical method the continuity equa-
tion was only used to estimate the correctness of the
obtained results.

g cos ¢ r y

F1G. 4. Two-dimensional model of a physical phenomenon.
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F1G. 5. Graphic interpretation of equation (6).

A substitution of equation (3) into equations (1)
and (2) gives

",EW P
v(f, 4 Y (] > sin ¢ — - 1[) 0 &
cy- P ex
Yy 1 p
PATgl 1 — S cos p—— - =0. (5)
0 p Oy

Integration of equation (5) for the boundary con-
dition (y =0, p. = p,(,-s) gives a formula for the
pressure distribution in a boundary layer directed ver-
tical to the heating surface

-

.
L A
Py = Pui-0y T pBATg (}- T 3> cos ¢. (6)

Figure 5 presents the physical interpretation of
equation (6) on an example of a horizontal plate.

Pressure (p,.._.)). described by cquation (7) rep-
resents the excess of pressure over the hydrostatic
pressure (p’,,_,), cxisting on the border of the

boundary layer on the following level :
Pyoos) = (H—3cosp—xsind)p..g. N

Comparison of both these pressures is possible after
taking into account thermal expansion of fluid

p=p, 1=HT.—T,)] ®)
which yields
=pyen = (H—-dcosp—xsind)p,g
=pgP(T.,—T,)(H—dcos¢p—xsing¢). (9)

pl{l"—’ﬂ)

In a case of natural convection in an unlimited
space, when H >» ¢ and H » x, equation (9) trans-
forms into

Poaiy=8) = /)(/ﬁ(T\ - T, )H = const. (10)

From condition (10), equation (6) may be differ-
entiated with respect to x

oot

0o
T30 ‘3) acose D
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For subsequent considerations in pursuance of refs.
[9, 13] the mean value of the boundary layer thickness
increase on the length of its growth was introduced
and it was assumed that this value, except the sep-
aration point (x = x.,) and above the leading edge of
the plate (x = 0), is constant

o 0o
- x = F=const

Ox ~ Ox

(12)

Substitution of equations (11) and (12) into equa-
tion (4) leads to
pro 2yt
57 300

CW,

1
‘»,(ﬂyz '.qBATFHII)( _3> COS(I)

jg[fAT(l _ ;) sing. (13)

For thc boundary condition (for y =0 and 4,
W. = 0) a double integration of equation (13) allows
the evaluation of the formula of local (equation (14))
and mean (equation (15)) velocity in the boundary
layer

gpAT v
Wom, = "’"‘y |:F(| ) <I7

N },2 § i
xeospE| =7 T35 550

- 1 (°
W\'Hrll) :—_5 J; W\»u,n) d}’

gBATS], cos¢ sing
=" um|:F“”) A T | (15)

2y5 oyt 1oy
605~ 6 60

4 Jane]
sing | (14)

It

A change in mass flow intensity caused by a change

in fluid density gives
cos¢  sin¢
EI a1y 7:2”7 i 40 :I

dm = d(pW,19) = 3‘61/'}A/T|:
(16)

x 034y, 0.

The amount of heat necessary to create this change is

. 3pg AT cos ¢ sin¢
dQ =Aidm = - \'77 {1 777 - 40

X 8T =T, )e, dd. (17)

Substitution of the mean value of temperature

7—r)= | ar(1=2) ar=2T (s
(\‘ 1,)‘50 _() )'—3 ( )
yields
q/i(AT) cos d) sin ¢
dg = P v Fo— 72 T 40 oumip do.
(19)

The heat flux may be subordinated to the heat trans-
fer coefficient (o) availing of cquation (20)
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o6
dQ = 21AT dx = —)L<~) IAT dx.  (20)
ay y=0
From the adopted temperature profile inside the
boundary layer (equation (3)) the dimensionless tem-
perature gradient on the wall may be evaluated as

(56) 3
a}‘ v=0 -

Substituting equation (21) into equation (20) and
equating the result with equation (19), the dependence
(22) and equation (23) are obtained

cos¢ sin¢
[{H1} ‘77 —- "47

2D

Sl b

]5&“,)0}, dd =dx. (22)

The thickness of the boundary layer may be deter-
mined from integration of equation (22) for the
boundary condition {(x = 0, = 0)

8 l';4-’5(1,~'m
cosd sing |V
(Ra<~n,n3}”4 [Fu,fn) *’—',27 + jﬁ]

The other way of finding the thickness of the bound-
ary layer by substituting correlation (12) into equation
(22) has also been considered, yet the roots of the
obtained quadratic equation of F according to the
criteria given by Czebyszew have no exact solutions.

From equations (20) to (23) the local and sub-
sequently mean value of heat transfer coeflicient (%)
in region I (subscript I and +) or in region 1 (II
and —) are obtained

@3

5(15;1) =

2V43 cos ¢

i v sin¢ |
iy = - [Rage 174 Fogy oot 4 2
Gy ,\‘”,”)[ a(.\f”))l [(‘:H) e 40}
24

1 Nerqilly
I %y dx
Xerqyy Jo

e [Ra(x,J,,)] e [Fu;u)
]

Koy =
cos ¢ sing |

72 T 40
(25

The complete heat flux transferred from the plate
is

Qtot = QI +Qu (26)
which may also be written as
U AT (X, + %) = GATx, +duATxy.  (27)

A subsequent transformation yields

e A (gﬁAT)”“

- va

) 3 (x!3¢’4®xl,’4 +~rl}l_,v“4 CI)]I;‘-‘I)

(28)

where

cos ¢ sin¢
@y = Fupy 7N + 40

(29)

Assuming that in the place of separation of the
boundary layers and their transformation into a free
convection flux the thicknesses of these layers in
regions I and IT are equal (6, = d..4y), correlation (30)
is obtained from equation (23)

A

Xy @Oy R (30)

By substitution of dependence (30) in equation (28),

equation (31) is obtained as criteria relation (32) per-

tinent for any inclination of the plate, despite the

fact that it is described exclusively with parameters of
region 1

994
s _‘:’Sm (R(I(A\.‘}) |i/4(b‘l;4

Py Xy

(31

Nu,, = 1.586(Ra,., )" (32)

The solved criteria equation (32) may be utilized
after determination of the relation for the region I
boundary layer length (x,) as a characteristic linear
dimension of a phenomenon and of the relation for
the value of coefficient F) in region 1.

For a plate of a length or diameter d the following
dependence is correct

X4y =d. (33)
Use of it in equation (30) yields:
o =df 1 ! (34)
T g )
I

The value of coefficient F; may, however, be deter-
mined according to its definition (12) from equation
(23)

1 {7 dé 1
F,:-j —dx = —§8
X Jo dx X3

Substitution of equation (35) into equation (34)
gives

X, 23;4

e T 5
o (Rff(x,}q)l)m 3)

!
X = d[l - 2+ 32 Lol 34, 5‘ I, tan d) [Ra(x])q)lllm] .
(36)

The above obtained solution seems to be incon-
sistent with the hitherto known criteria relations for
horizontal, vertical and inclined plates and it addition-
ally gives an impression that it is too complicated and
thus difficult for practical use. In subsequent sections
these doubts will be explained.
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8. PRACTICAL UTILIZATION OF THE
ANALYTICAL SOLUTION

The obtained result of the simplified analytical solu-
tion resolves to the system of four mutually correlated
equations with four unknowns (37)-(40)

23,4
F=—"_
(Rayy )7 ¢
cos ¢ sing .
O=F L ¢
72 " a0 38
gPBATx}
Ra, = 4’;‘%}” (39
X(ch)
=d|1 :
N 243%-27%%-5" " tan ¢ (Rag, ™' |
(40)

The simultaneous solution of these equations had
been numerically carried out based on an algorithm
shown in Fig. 6. For the introduced values of Rayleigh
number (Ra,,,) and inclination angle (¢), the values
F, @, x and Ra,, were obtained.

_ 1
£l 254 Ra, 174 $174

ol

.~ COSP . sin
&-F B+
|

xl=|-

2+4.28I1 tan p Ra)a - ¢la

FiG. 6. Algorithm of calculation of equations (37)-(40).

0.8

06

002

0 0l

Q.8

XCh/dOT—

F1G. 7. Dependence of the angle (¢ ) and the Rayleigh number
(Ra) on: the coefficient F, coefficient ® and the characteristic
linear dimension x.,.

The results of calculations made in this way are
presented in a graphic form in Fig. 7.

In the calculation of our own experimental inves-
tigations the Nusselt number should also be deter-
mined based on the appointed characteristic linear
dimenston (x,,). The quoted algorithm renders poss-
ible reckoning of other investigators’ results, elab-
orated in the form applied so far. It is necessary then
to know additionally the dimensions of the heating
plates used by them (d) to determine Nu ., according
to the relation

x(ch)

Nutgeny = Nty —— .

y “n

9. EXPERIMENTAL VERIFICATION

Experimental investigations on natural convection
from a rectangular plate (0.1 m, 0.06 m) published by
the author in 1984 [4] led to the following criteria
relations:
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Nurg,, =1.586 (A g &)

| | |

| 2 3

Lg (Fg, D)

F1G. 8. Results of experimental investigations [4] elaborated in accordance with the theory suggested in
this paper.

Nu = 0.612(Ra)"* for a vertical plate, ¢ = 90 deg

(42)
Nu = 0.766(Ra)""®

for a horizontal plate, ¢ = 0 deg. (43)

Re-elaboration of the obtained results according to
a procedure presented in Section 8 is shown in Fig. 8.

The effect of utilization of the suggested theory for
recalculating the results obtained for a round inclined
plate (Table 1) is presented in Table 2 and Fig. 9.

The results of experimental investigations on an
inclined plate (¢ = 45, 60, 75 and 90 deg) carried out
by Kierkus [23] had also been elaborated in a similar
way. The results of these experiments, dealing with

air, had been presented in a form of the relations
of local Nusselt and Grashof numbers, therefore the
Rayleigh numbers have been determined initially and
subsequently they have been recalculated in accord-
ance with the given algorithm. The effect is presented
in Fig. 10.

Analysis of Figs. 8-10 yields evidence that about
95% of the experimental results falls within a 4+-20%
range, hence it may be stated that verification of the
suggested theory yielded positive results.

10. CONCLUSIONS

The suggested model of the phenomenon of con-
vective heat transfer from real, isothermal, inclined

Table 2. Experimental results from Table 1 recalculated using the theory presented
in this paper

¢ Xen/d F o Nug, Ra,,
[deg] ] [l 1 =l [l
g =2514kWm?
0 0.50000 0.15614 0.00217 11.04 7.75TE+5
] 0.54729 0.15033 0.00252 12.25 1.0O17TE+6
2 0.58893 0.14524 0.00289 13.31 1.271E+6
3 0.62509 0.14133 0.00327 14.40 1.498E+6
4 0.65723 0.13716 0.00364 15.25 1.761E+6
5 0.68598 0.13292 0.00402 15.94 2.059E+6
6 0.71113 0.12939 0.00440 16.59 2.332E+6
8 0.75282 0.12363 0.00518 17.69 2.821E+6
10 0.78711 0.11764 0.00595 18.17 3423E+6
12 0.81396 0.11333 0.00674 18.71 3.882E+6
qg=7288 kWm?
0 0.50000 0.10101 0.00140 15.90 6.847E+6
1 0.57052 0.09564 0.00176 18.15 1.006E 47
2 0.62793 0.09138 0.00214 19.93 1.327E+7
3 0.67475 0.08776 0.00253 21.29 1.640E+7
4 0.71337 0.08452 0.00291 22.30 1.952E4-7
S 0.74462 0.08218 0.00332 23.18 2.184E+7
6 0.77090 0.07997 0.00372 23.82 2.410E+7
8 0.81139 0.07659 0.00453 24.94 2.740E+7
10 0.84039 0.07439 0.00536 26.05 2.893E+7
12 0.86314 0.07208 0.00618 26.56 3.086E+7
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05 14
Nitg= 1. 586 ( Ra, , &)
~1.4
5
gi
=~ 1.3
g 514 kW m™2
288 kW m™2
12
P
1.0
0.9 } |
3 4 5
tog (Rox P}
Fi1G. 9. Graphical form of experimental results presented in Table 2.
o
1.6 174

Nu, =1.586 (Ra, @)

0.4

a =90 deg

! | L

4 5
Log U?i:t)(ch - 2]

FiG. 10. Results of experimental investigations [23] elaborated in accordance with the suggested theory.

plates exhibits a convergence with the results of exper-
imental investigations which cannot be only acci-
dental. Even the initial results suggest that it is possible
to describe all the cases of heating plate inclination
with one criteria relation and then to compare the
results on a single graph. Evidently, both the two-
dimensional model, as well as its simplified solution,
are merely a first approximation of the real phenom-
enon and this simplified solution may very likely
inspire other investigators to solve more accurately
the simultaneous partial differential equations
describing the above presented model with methods
proposed by Kierkus {13}, Chen ef of. [24], Yu and
Lin [25] or one of the numerical methods, for instance
that of Takeucht et al. [10].
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CONVECTION THERMIQUE NATURELLE POUR DES PLAQUES DE DIMENSION
FINIE

Résumé—On présente une nouvelle approche par un modéle de convection naturelle pour une plaque

isotherme inclinée et une solution analytique simplifiée est donnée. On distingue deux régions séparées

avec des mouvements différents de fluide. Dans la premiére région, 'écoulement dans la couche limite et

la composante de la force de flottement paralléle a la plaque convergent tandis que la seconde zone ces
directions sont opposées. La théorie présentée est verifiée expérimentalement,

WARMEUBERGANG DURCH NATURLICHE KONVEKTION AN ENDLICHEN

PLATTEN

Zusammenfassung—Es wird ein neues Modell fiir die natiirliche Konvektion an einer isothermen geneigten

Platte sowie eine vereinfachte analytische Losung dafiir vorgestellt. In diesem Modell werden zwei getrennte

Gebiete mit unterschiedlicher Fluidbewegung betrachtet. Im ersten Gebiet sind die Richtungen von

Grenzschichtstrémung und Auftriebsstrémung gleich, wihrend im zweiten die Richtungen umgekehrt sind.
Die vorgestellte Theorie wird durch Versuche bestitigt.

ECTECTBEHHOKOHBEKTHUBHBII TETIJIONEPEHOC V TJIACTHH C KOHEYHBIMU
PASMEPAMU

Awnnoramus—TIpe1okeH HOBBIH NOIXOM K ONHCAHAIO €CTECTBEHHON KOHBEKIMH Yy H30TEPMATECKOH HAK-

JIOHHOM TUIACTHHBL, B PaMKax KOTOPOTO NOJIYSEHO YNPOUIEHHOE aHAIMTHYECKOe peleHue. B npuasToM

ONHMCAHHH BBIACHSIOTCS ABE PAIMYHLIC O6NACTH C pasHLIMH PEXMMAMH TEYEHMS XHIKOCTH. B mepsoit

o6nacTi HanpaBlieHHMe TEUCHAA XHIKOCTH BHYTPH NOTPAHMYHOIO CNOS M HANDABJICHHE HapPaLIeNbHOM

OCTHHE COCTABAMIOWIEH OXPEMHOR CHIILI COBNAAIOT, TOTAA Kak BO BTOPOHR obsacTh 3TH HanpasJie-
HuS TPOTHBONOAOXHEL. [Ipefnoxentas TeopHs NOATBEPKASETCH IKCICPUMEHTANBHO.



