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Abstract-A new approach to the model of natural convection from an isothermal inclined plate and a 
simplified analytical solution of this model are presented. In this model two separate regions with different 
fluid motions are distinguished. In the first region, the direction of fluid flow inside the boundary layer and 
parallel to the plate buoyancy force component converge, while in the second one these directions are 

opposite. The theory presented is verified experimentally. 

1. INTRODUCTION 

A CONSIDERABLE discrepancy between the results of 
theoretical considerations and experimental inves- 
tigations occurs in the convection heat transfer from 
flat isothermal surfaces. This discrepancy is not con- 
stant, but it alters with the plate inclination angle. 

Differences between particular criteria relations, 
describing the vertical case, obtained by 25 authors, 
differ by f20% [I, 21. For inclined plates, the dis- 
crepancies are much greater and amount to f 45 % 
within the laminar range and to about If: 100% within 
the turbulent range [3]. The interval containing the 
results obtained for the horizontal case by 19 inves- 
tigators amounts to c. f 50 % [l-3]. 

In the hitherto investigations [4] it has been proved 
that the methods of measurement and the equipment 
employed may cause errors yet their magnitude is 
constant and independent of the plate inclination 
angle. The only exception is the gradient method, in 
which the accuracy may be influenced by the surface 
inclination angle, especially in the case of incompetent 
or accidental location of the experimental points 
(thermocouples) on the measurement surface [5]. This 
method, however, is most frequently used as a quali- 
tative method together with a quantitative (balance) 
method, so it cannot be the main reason for the dis- 
crepancy of the above-mentioned criteria relations. 
Therefore, it has been decided to search for the 
reasons of such a behaviour by verifying the cor- 

rectness of a physical model of the phenomenon. In 
the author’s opinion even the most accurate cal- 
culations based on an inaccurate model are not so 
valuable as approximate calculations based on the 
contrary on a more accurate model. 

2. AIM OF WORK 

The presented research attempts to apply a model 
of the convective heat transfer, which would be 
universal for all angles of plate inclinations 
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(0 < 4 < 7r/2). The proposed model is a consequence 
of visualization of the convective heat transfer from 

real inclined plates. The aim was to describe the 
phenomena taking place in the presented mode1 by 
reduced differential equations and also to solve them 
in a simplified way. Approximate calculation methods 
used in the works of an experimental type are 

adequate due to the comparable order of accuracy of 
the obtained results. Moreover, the advantage of these 
methods is the possibility of direct interpretation of 
the obtained results and a quick modification ofexper- 
imental investigations. 

3. THEORETICAL MODELS OF THE 

CONVECTION HEAT TRANSFER 

The model proposed by Schmidt and Beckmann [6] 
belongs to the already classical models of convective 
heat transfer. This model was obtained on a basis of 
experimental results of visualization of the boundary 
thermal layer on a vertical isothermal plate [7]. Figure 
1 (a) presents a graphical interpretation of this model. 
Subsequent investigations on vertical plates were 
carried out by Lorenz (1934) Saunders (1939) Schuh 
(1948), Ostrach (1953), Sparrow (1959), Gebhart 
(1962, 1966) and also by Fujii (1972) [9], Takeuchi 

(1974) [lo], Ling (1982) [ll], Churchill (1983) [12] 
and others [8]. They are characterized by increasing 
accuracy of calculations due to elimination of con- 
secutive simplifying assumptions or to defining them 
more accurately due to addition of other limiting con- 
ditions. These considerations, however, irrespective 
of the fact whether they have been conducted ana- 
lytically or numerically, are always based on the same 
physical model of this phenomenon (Fig. 1 (a)). 

The same model (Fig. 1 (b)) has also been adopted 
for a description of the results obtained with inclined 
plates. The boundary layer thickness increases along 
the plate length, but the buoyancy force, present in 
the Navier-Stokes equations, is replaced by the force 
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NOMENCLATURE 

n thermal diffusivity, A,/cPp Greek symbols 

CII specific heat at constant pressure of fluid 

; 

heat transfer coefficient 
d length or diameter of the plate coefficient of volumetric expansion 
F coefficient of boundary layer shape, 6 thickness of boundary layer 

equation (12) A difference 

Y gravitational acceleration 8 dimensionless temperature 

u height of a column of fluid (see Fig. 5) x thermal canductivity 

i specific enthalpy V kinematic viscosity 
m mass flux P fluid density 

Nr$,, hfB, li) Nusselt numbers, ad/i, ax/i, 4 angle of plate inclination 

respectively cp coefficient related to I$ and F, equation 

P pressure (29). 

Y heat flux density 

Q heat flux Subscripts 

R+)* RQ,.X,? R%t Rayleigh numbers, ch characteristic 

&ATd”/vn, y@AT~~/va, g@STiS3jva, cr point of separation of boundary layers 

respectively I, II region I or region II 

T temperature tot total 

W velocity W wdt 

X Iength of boundary layer X x-direction or to fluid properties inside 

X coordinate horizontal to the surface boundary layer 

Y coordinate vertical to the surface. cg fluid ambient condition. 

components x and J. This case has been investigated 

by Rich (1953), Sugawa (19551, Vilet (1969) 181, 
Kierkus (1968) [13] and also by Hassao (1970) [14], 
Fujii (1972) [9], Miller (1978) [i 53, Rasmus (1979) [lB], 

Raithby (1983) [12], Lewandowski (1986, 1987) [3] 
and others. 

Convective heat transfer from a horizontal plate 

has also been explained by a similar model (Fig. 1 (c>> 
based on a homogeneous boundary layer increasing 
on a semi-infinite flat surface. The work of Rotem 

and Claassen (1969) [ 171 is a standard example of 
utilization of this model for a horizontal plate. These 
scientists have also published the results of visu- 
alization investigations. Their photographs not only 

show the initial edge of the horizontal plate, they also 
show the place where the boundary layer transforms 

into a plume. At this point, the physical model of 
this phenomenon accepted by them starts to be 
inadequate. Hence, according to the analysis of their 

results of visualization and also of Schmidt’s earlier 
photographs (1934) f18] the analogy between the 

growth of a boundary thermal layer on a vertical and 
a horizontal plate does not concern the whole surface. 
Other investigators of this case, based on a semi- 

infinite plate, are for example: Pera (1973), Blanc 
(1974) [8], Goldstein (I 983) [ 191 and others. 

The results of visualization experiments, carried out 
on real plates by AI-Arabi (1976) [20], Sparrow (I 969). 

(b) 

FIG. I I Theoretic madels of natural convection for a Eat surface. 
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Keun-Shik (1988) [21] and others [3] suggest that small values of these angles, satisfying the condition 

it is necessary to employ another model of the of axial symmetry. At greater angles (4 > 12 deg) 

phenomenon. the experiments have been carried out on rectangular 

However, to our knowledge, no works devoted to plates, which for this range approached more closely 
horizontal surfaces, based on any other model than the two-dimensional model of the phenomenon [5]. 
that of the semi-infinite plate, have been published. Photographs presented in Fig. 2 concern the con- 

vective heat transfer from an isothermal flat round 

4. RESULTS OF VISUALIZATION OF NATURAL 
plate of diameter rl = 0.07 m. From among the photo- 

CONVECTlON FROM INCLINED PLATES 
graphs of plate inclination angle ranging from 4 = 0 
to 12 deg the case of plate inclination angle &J = 4 deg 

The results of visual research on round plates pre- has been chosen as an example for presentation. The 
sentcd in this chapter do not refer to the entire range tested Auid was glycerine and heating fluxes were 
of plate inclination angles. but they are confined to y = 2.514 (Fig. 2(a)) and 7.288 kW m ’ (Fig. 2(b)). 

FIG. 2. Visual photographs of natural convection heat transfer from an isothermal, round (d = 0.07 m) 
plate to glycerine. Exposure time r = 5 s: (a) y = 2.514 kW rn-‘: (b) y = 7.288 kW me2. 
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Table I. Results of experimental study of natural convection heat transfer from an 
iso&ermal, round and inclined plate to glycerine 

Id:gl [%] 

0 32.57 
I 32.57 
2 32.59 
3 32.47 
4 32.57 
5 32.80 
6 32.94 
8 33.11 

IO 33.60 
I2 33.81 

0 54.28 

[rd] 
c( 

[W mm * deg ‘1 

q = 2.514 kW mm’ 
15.67 89.993 
15.91 91.264 
16.09 92.176 
16.28 93.917 
16.49 94.605 
16.75 94.144 
16.97 95.162 
17.25 95.868 
17.46 94.191 
17.60 93.781 

y = 7.288 kW mm’ 
20.45 130.246 

Nu,,,, 
F-1 

22.072 
22.383 
22.605 
23.032 
23.199 
23.231 
23.333 
23.504 
23.090 
22.988 

31.797 
I 54.17 20.35 130.337 31.820 
2 54.07 20.17 129.975 3 I .733 
3 54.07 19.98 129.257 31.559 
4 54.21 19.79 128.021 31.257 
5 54.07 19.51 127.498 31.132 
6 54.07 19.25 126.550 30.902 
8 53.86 18.85 125.870 30.739 

IO 53.30 18.57 126.893 30.993 
I2 53.20 18.21 125.954 30.767 

h,,, 
L-1 

6.206E + 6 
6.206Ef6 
6.224Ef6 
6.134E+6 
6.202E+6 
6.379E+6 
6.486E+6 
6.612E+6 
7.017E+6 
7.199Ef6 

5.478E+7 
5.4188+7 
5.359E+7 
5.339Ef7 
5.378Ef7 
5.289E+7 
5.260E+7 
5.129E+7 
4.874E++ 
4.799E+7 

The quantitative aspect of the obtained exper- 
imental results has been presented in Table 1. 

The above photographs and the experimental pro- 
cedure of investigation on natural convection heat 
transfer from a round, inclined plate, as well as the 
equipment used in the research, have been more exten- 
sively described in refs. [3-S]. 

Analysis of the photographs of all the cases of plate 
inclination angle gives evidence that for a horizontal 
plate the boundary layers grow identically from oppo- 
site leading edges and then transform above the plate 
into a plume. The centreline of this axially symmetric 
free heat flux is vertical to the surface and passes 
through the plate symmetry axis. At increased incli- 
nation angle the separation point of the boundary 
layers, through which passes the centreline, moves to 
one (trailing) edge and the opposite boundary layers 
(identical for the horizontal case) begin to differ 
increasingly from each other. 

5. PROPOSED MODELS OF NATURAL 

CONVECTION FROM FLAT FINITE PLATES 

In the suggested models (Fig. 3) of convective heat 
transfer from flat isothermal surfaces of finite dimen- 
sions, transition from one case to the other proceeds 
together with a displacement of the separation point. 
Thus, the case of an inclined plate is virtually a general 
model concerning plates arbitrarily oriented in an 
unlimited space (Fig. 3(b)) in which vertical (Fig. 3(a)) 
and horizontal (Fig. 3(c)) positions of plates con- 
stitute only specific cases. Versatility of the suggested 
model consists of the fact that a change in surface 
inclination angle results in fluent changes of the par- 

ticipation of regions I and II in the heat exchange, 
whereas participation of region III remains constant. 
For the two characteristic cases-horizontal and ver- 
tical-the differences between regions I and II gradu- 
ally disappear in the first case, whereas in the second 
case it is region II that gradually disappears. In the 
final effect for horizontal plates two symmetrical 
boundary layers exist, growing from each edge (region 
I = region II) and transforming at the separation 
point into free stream heat convection (plume). On 
the other hand, in the case of vertical plates the model 
is identical to the hitherto applied one, because then 
only one boundary layer appears (region II = 0) sub- 
sequently converting into a wake and next into a 
plume (region III) [22]. 

6. PHYSICAL MODEL OF THE PHENOMENON 

Limiting the considerations only to the boundary 

layer region and to the two-dimensional case a physi- 
cal model of the phenomenon may be expressed as 
follows (Fig. 4). In this model three regions of the 
convective heat transfer are specified. 

(1) Region I, in which the buoyancy force is parallel 
to gs and its sense conforms to fluid velocity W,. It is 
a region of decisive importance with regard to heat 
transfer, because the thickness of a boundary layer 
(6,) is smaller, whereas its length (x) is greater than 
in region II. 

(2) Region II differs from region I in the sense of 
fluid velocity in the boundary layer and in conse- 
quences resulting from this fact as, for instance, 
different shapes of the boundary layer c%/c?.x and x. 
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FIG. 3. Real models of the convection heat transfer from : (a) vertical ; (b) inclined ; (c) horizontal plates 

(3) Region III, or the free heat convective flux, 
which according to the evidence reported in refs. 
[5,22], as it departs from the plate becomes the same 
for all cases and therefore this region was omitted in 
the calculations presented below. 

7. SIMPLIFIED QUASI-ANALYTICAL SOLUTION 

Introducing the simplifying assumptions typical for 
the natural convection such as : 

(a) fluid is incompressible and its flow is laminar, 
(b) inertia forces in comparison with the viscosity 

forces may be ignored, 

(c) w, >> w,, 
(d) physical properties of fluid in boundary layers 

(index X) and in the undisturbed region (co) are con- 
stant, 

(e) the temperature of the plate (T,,,) is constant, 
(f) thicknesses of thermal and hydraulic boundary 

layers are the same, the Navier-Stokes equations may 
be written as 

a2W 1 ap v$ +gb(T,-T,) sin C/J-- ~ -- = 0 
P ax 

(1) 

1 ap 
8(T,-T,km#-p~=o (2) 

where the + and - signs refer to region I and region 
II, respectively. 

Instead of the direct form of the Fourier-Kirchhoff 
equation it was decided, according to Squir and 
Eckert, to make the assumption that the temperature 
profile in the boundary layer is described by 

0 = (T,-T,)/(T,--TT,) = (I-y/s)2. (3) 

In this quasi-analytical method the continuity equa- 
tion was only used to estimate the correctness of the 
obtained results. 

FIG. 4. Two-dimensional model of a physical phenomenon 



FIG. 5. Graphic interpretation of equation (6) 

A substitution of equation (3) into equations (1) 

and (2) gives 

Integration of equation (5) for the boundary con- 
dition (J = 6, pI = p,,,-,),) gives a formula for the 
pressure distribution in a boundary layer directed ver- 
tical to the heating surface 

Figure 5 presents the physical interpretation of 
equation (6) on an example of a horizontal plate. 

Pressure (PI , , c), ). described by equation (7) rcp- 

resents the excess of pressure over the hydrostatic 

pressure (P’, ,) +,), existing on the border of the 

boundary layer on the following level : 

If,,,-,>, = (H-b cos c/-.Y sin $)p,,y. (7) 

Comparison of both these pressures is possible after 

taking into account thermal expansion of fluid 

P = P, ]I -NT, - T, )I (8) 

which yields 
xSf ,,,, (T,-T,)~;,db. (17) 

Substitution of the mean value of temperature 
P,,,_,), =P’,~~_,), = (H-SCOS~-.usin +)p,g 

= pgB(T,-_,,)(H--bcoscb-_usin d,). (9) 

In a case of natural convection in an unlimited 
space. when H >> 6 and H >> x, equation (9) trans- 
forms into yields 

p, (, _,), = p,yp( T, - T, )H g const. (10) 

From condition (IO). equation (6) may be differ- 
entiated with respect to .Y 

For subsequent considerations in pursuance of refs. 
[9, 131 the mean value of the boundary layer thickness 
increase on the length of its growth was introduced 
and it was assumed that this value, except the sep- 
aration point (.v = .x,,) and above the leading edge of 
the plate (.v = 0). is constant 

is AS - 
(7.X = i.u 

= F 2 const 
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(12) 

Substitution of equations (1 I) and (12) into equa- 
tion (4) leads to 

For the boundary condition (for J = 0 and 6. 
W, = 0) a double integration of equation (13) allows 
the evaluation of the formula of local (equation (14)) 
and mean (equation (I 5)) velocity in the boundary 
layer 

W \(I II) = 

> 1 sin4 (14) 

_ .yliATG II) 

~ F,,nj L cos 4 sin 4 

I’ 72 ~~~~ + 40-- 1 (15) 

A change in mass flow intensity caused by a change 
in fluid density gives 

dm = d(p@‘,1(5) = 
cos 4 sin 4 

72-m + -40 1 
x S; ,,, d5. (16) 

The amount of heat necessary to create this change is 

The heat flux may be subordinated to the heat trans- 
fer coefficient (a) availing of equation (20) 
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dQ = IlATdx = -i E 
0 ay y=o 

1ATd.x. (20) 

From the adopted temperature profile inside the Assuming that in the place of separation of the 
boundary layer (equation (3)) the dimensionless tem- boundary layers and their transformation into a free 
perature gradient on the wall may be evaluated as convection flux the thicknesses of these layers in 

regions I and II are equal (&,i = &,,i), correlation (30) 
is obtained from equation (23) 

Substituting equation (21) into equation (20) and (30) 
equating the result with equation (19) the dependence 
(22) and equation (23) are obtained By substitution of dependence (30) in equation (28), 

equation (3 1) is obtained as criteria relation (32) per- 
tinent for any inclination of the plate, despite the 
fact that it is described exclusively with parameters of 

The thickness of the boundary layer may be deter- region I 

mined from integration of equation (22) for the -- 
boundary condition (x = 0,6 = 0) %,t.% 

2%‘4 

7-- = -3-(Ra&,))‘%:~4 
L. 

(31) 

6 
8 %~,:,r~ 

(1,‘ll) = .___ (23) (Ra,, ,,/, ,I”” 
The solved criteria equation (32) may be utilized 

The other way of finding the thickness of the bound- after determination of the relation for the region I 

ary layer by substituting correlation (12) into equation boundary layer length (x,) as a characteristic linear 

(22) has also been considered, yet the roots of the dimension of a phenomenon and of the relation for 

obtained quadratic equation of F according to the the value of coefficient F, in region I. 

criteria given by Czebyszew have no exact solutions. For a plate of a length or diameter d the following 

From equations (20) to (23) the local and sub- dependence is correct : 

sequently mean value of heat transfer coefficient (2) 
in region I (subscript I and +) or in region II (i1 

x, +x,r = d‘ (33) 

and -) are obtained Use of it in equation (30) yields : 

The complete heat flux transferred from the plate 
is Substitution of equation (35) into equation (34) 

gives 

Qm = QI + Q,, (24) 

which may also be written as 
I _-_______ 1 2+32~2-“4~5-‘~tan~[~a,,,,~,]‘!4 . 

CY ,,,, AT@, +x,,) = cC,ATx, +d,,AT.s,,. (27) 

A subsequent transformation yields (36) 

The above obtained solution seems to be incon- 
sistent with the hitherto known criteria relations for 
horizontal, vertical and inclined plates and it addition- 

(28) ally gives an impression that it is too complicated and 
thus difhcult for practical use. In subsequent sections 

where these doubts will be explained. 

x,=d l- 
1 

i 1 2+Ytan4 ’ ~._ 
56 

(34) 

The value of coefficient F, may, however, be deter- 
mined according to its definition (12) from equation 

(23) 
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8. PRACTICAL UTILIZATION OF THE 

ANALYTICAL SOLUTION 

The obtained result of the simplified analytical solu- 
tion resolves to the system of four mutually correlated 
equations with four unknowns (37)-(40) 

Ra,,h, = y@!_T%? 
va 

(37) 

(38) 

(39) 

1 

‘*tan~$(Ra,,,,@)‘s~ 1 ’ 
(40) 

The simultaneous solution of these equations had 

been numerically carried out based on an algorithm 
shown in Fig. 6. For the introduced values of Rayleigh 

number (Z&z,,,) and inclination angle (c$), the values 

F, @,, ,vc,,,) and &,,,, were obtained. 

F=l 

FI = I 
294 R,7,l/4 @I” 

FIG. 6. Algorithm of calculation of equations (37)-(40) 

‘IE4 

lRa=IE3 

05 
0 20 40 80 

FIG, 7. Dependence ofthe angle (4) and the Rayleigh number 
(Ru) on : the coefficient F, coefficient 0 and the characteristic 

linear dimension xCh. 

The results of calculations made in this way are 
presented in a graphic form in Fig. 7. 

In the calculation of our own experimental inves- 
tigations the Nusselt number should also be detcr- 
mined based on the appointed characteristic linear 
dimension (x,,,,). The quoted algorithm renders poss- 
ible reckoning of other investigators’ results, elab- 
orated in the form applied so far. It is necessary then 
to know additionally the dimensions of the heating 
plates used by them (d) to determine N&h) according 
to the relation 

(41) 

9. EXPERIMENTAL VERIFICATION 

Experimental investigations on natural convection 
from a rectangular plate (0.1 m, 0.06 m) published by 
the author in 1984 [4] led to the following criteria 
relations : 
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FIG. 8. Results of experimental investigations [4] elaborated in accordance with the theory suggested in 
this paper. 

Nu = 0.612(Ra)‘j4 for a vertical plate, 4 = 90 deg 

(42) 

NU = 0.766(Ra)‘;5 

for a horizontal plate, 4 = 0 deg. (43) 

Re-elaboration of the obtained results according to 
a procedure presented in Section 8 is shown in Fig. 8. 

The effect of utilization of the suggested theory for 
recalculating the results obtained for a round inclined 

plate (Table 1) is presented in Table 2 and Fig. 9. 
The results of experimental investigations on an 

inclined plate (4 = 45, 60, 75 and 90 deg) carried out 
by Kierkus [23] had also been elaborated in a similar 
way. The results of these experiments, dealing with 

air, had been presented in a form of the relations 
of local Nusselt and Grashof numbers, therefore the 

Rayleigh numbers have been determined initially and 
subsequently they have been recalculated in accord- 
ance with the given algorithm. The effect is presented 

in Fig. 10. 
Analysis of Figs. 8-10 yields evidence that about 

95% of the experimental results falls within a _+ 20% 

range, hence it may be stated that verification of the 
suggested theory yielded positive results. 

10. CONCLUSIONS 

The suggested model of the phenomenon of con- 
vective heat transfer from real, isothermal, inclined 

Table 2. Experimental results from Table 1 recalculated using the theory presented 
in this paper 

0 0.50000 
I 0.54729 
2 0.58893 
3 0.62509 
4 0.65723 
5 0.68598 
4 0.71113 
8 0.75282 

10 0.787 11 
12 0.81396 

0 

2 
3 
4 
5 
6 
8 

10 
12 

0.50000 
0.57052 
0.62793 
0.67475 
0.71337 
0.74462 
0.77090 
0.81 I39 
0.84039 
0.86314 

q = 2.514 kW m-’ 
0.15614 0.00217 
0.1 so33 0.00252 
0.14524 0.00289 
0.14133 0.00327 
0.13716 0.00364 
0.13292 0.00402 
0.12939 0.00440 
0.12363 0.005 18 
0.11764 0.00595 
0.11333 0.00674 

q = 7.288 kW m- ’ 
0.10101 0.00140 
0.09564 0.00176 
0.09138 0.002 14 
0.08776 0.00253 
0.08452 0.0029 1 
0.08218 0.00332 
0.07997 0.00372 
0.07659 0.00453 
0.07439 0.00536 
0.07208 0.006 18 

11.04 7.757E+ 5 
12.25 l.O17E+6 
13.31 1.271E+6 
14.40 i .498E + 6 
15.25 1.761E+6 
IS.94 2.059E + 6 
16.59 2.332E i-4 
17.69 2.821E3+6 
18.17 3.423E+6 
18.71 3.882E+6 

15.90 6.847Ef6 
18.15 1.006Ef-I 
19.93 1.327E+7 
21.29 1.640Et7 
22.30 1.952Ef7 
23.18 2.184Ef7 
23.82 2.410Ef7 
24.94 2.740E + 7 
26.05 2.893E++ 
26.56 3.086E+ 7 
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o CJ= 2.514 kW mA2 
o q= 7.288 kW mm2 

FIG. 9. Graphical form of experimental results presented in Table 2 

I 6 

oip=45 dHJ 
4~=60 deg 
l $P=75 Cteq 
ng=9a deq 

FIG. 10. Results of experimental investigations [23] elaborated in accordance with the suggested theory. 

plates exhibits a convergence with the results of exper- 
imental investigations which cannot be only acci- 
dental. Even the initial results suggest that it is possible 
to describe all the cases of heating plate inclination 
with one criteria relation and then to compare the 
resuhs on a single graph. Evidently. both the two- 
dimensional model, as well as its simpli~ed solution, 
are merely a first approximation of the real phenom- 
enon and this simplified solution may very likely 
inspire other investigators to solve more accurately 
the simultaneous partial differential equations 
describing the above presented model with methods 
proposed by Kierkus [13], Chen et ~2. [24], Yu and 
Lin 1251 or one of the numerical methods, for instance 
that of Takeuchi et al. [lo]. 

Acknodedgemmt-I would like to express my deep gratitude 
to Professor Jarosiaw Mikielewicz for his help and inspiring 
discussions concerning the presented theory. 
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CONVECTION THERMIQUE NATURELLE POUR DES PLAQUES DE DIMENSION 
FINIE 

Ritsumk-On prksente une nouvelle approche par un modtle de convection naturelle pour une plaque 
isotherme incli&e et une solution analytique simplifiee est don&e. On distingue deux rtgions s&par&es 
avec des mouvements difft-rents de Ruide. Dans la premiere rkgion, I’&zoulement dans la couche limite et 
la composante de la force ,de flottement parallile B la plaque convergent tandis que la seconde zone ces 

directions sont opposbcs. La thiorie p&sent&e est v&if& exp6rimentalement. 

WARMEUBERGANG DURCH NATtSRLICHE KONVEKTION AN ENDLICHEN 
PLATTEN 

Zusammenfassung-Es wird ein neues Model1 fiir die natiirliche Konvektion an einer isothermen geneigten 
Platte sowie eine vereinfachte analytische LGsung dafiir vorgestellt. In diesem Modelt werden zwei getrennte 
Gebiete mit unterschi~licher Fluid~we~ung betrachtet. fm ersten Gebiet sind die Richtungen van 
Gr~n~chichtstr~mung und Anftriebsstr~mung gleich, wihrend im zweiten die Richtungen umgekehrt sind. 

Die vorgestellte Theorie wird durch Versuche bestgtigt. 

ECTECTBEHHOKOHBEKTMBHbIfi TEIIJIOl-IEPEHOC Y nJIACTklH C KOHE’JHbIMkI 
PA3MEPAMkl 

hlllOTNUW---n~AJ7OXCeH HOBbIii ClOmOn K OnBCaHWH) WTeclBeHHOti KOHBtXUHW )’ H30TepMWIeCKOii HaK- 

non~oii n.nacTeabI, B paMKax KOTO~O~O nonyreHo ynpou&=xnioe aHanriTH4ecKoe pmeeae. B ~PUHXTOM 

O~HC~HHH B~I~~JDIIOTCII ABepasnmebIe o6inacrs c pa3~b1hm pexm.iaMH Te9eHHn xH~~omi. B nepBo& 

06nacTsi Hanpameme TeYeHHR xm~oc~ii BH~T~E norpami=iHoro CJIOR N Hanpaanemie napamenbxioii 

MWTEIie COCTaBJlRloIIl&i nO~%WHOii CUJlbf COBnaLWOT, TOWa KaK BO BTOpOk 06xaCTA 3TH Hanpaene- 

HHX n~T~BOnO~O~b1. ~fW&JIOX$%iTiaX TeOpUS nOLiT~p%~aeTCR 3KCnepHMeHT~bHO. 


